
Programming Basics

ZIM 9.10

Zim is

a complete framework to develop and run
professional and mission critical applications by
tightly integrating a lean relational database, a

powerful Fourth Generation Language, an integrated
development tool, the integration with outside world

and client user interfaces.

What is Zim?

Building Zim Applications

A full Zim application is a set of Zim Documents (text files)
containing Zim commands organized as procedure

programs (structured in formal procedures) or macro
programs (no formal procedures).

Any Zim program can be created and edited using ZimIDE.

As soon as the program is created, it can be run (with or
without a compilation) by ZimQTC or invoked by another

program.

All Zim commands contained in a program can be run
individually in ZimQTC’s prompt with the obvious

exceptions of the ones requiring flow control.

% This is a Macro Program example (RunExample)

Find all EMPLOYEES Where MonthlySalary > #<1> -> sEmp1

List all sEmp1 format “#<3>”

sort sEmp1 by “#<2>”

List all sEmp1

Executing Macro Programs

Docname is the name of the document that contains the
macro program;

«Parameter-n» is one or more expressions used to initialize
the local macros #<1>, #<2>, etc., until #<9>.

DocName Parameter-1 Parameter-2 …

FixError

RunExample 3500 vVarCode “Description of Variables”

Procedures Programs

Procedure programs use the formal mechanism of the Zim
PROCEDURE command to pass values to the program and/or
receive values from the program.

It may contain zero or more local procedures followed by the main
procedure itself.

[LOCALPROCEDURE LocName ([parameters]) [LOCAL (local_vars)]

[exception handlers]

local procedure body

ENDPROCEDURE]

PROCEDURE ProcName ([parameters]) [LOCAL (local_vars)]

[exception handlers]

procedure body

ENDPROCEDURE

Procedures Programs

Parameters can be of the IN, INOUT or OUT and have no explicit
type but an implicit VARCHAR definition.

The main procedure and local procedures my use local variables
with the same VARCHAR definition.

The main procedure name must match the name of an existing Zim
Document.

The number of parameters and local variables is controlled by a
configuration parameter but is set by default to 256.

The Zim command ENDPROCEDURE executes an implicit RETURN
command.

BYE Exits an application session and returns control to the operating
system.

STOP Ends execution of an application program and returns to the
main prompt level or, if already at the prompt, it is equivalent to
a BYE command.

PAUSE Causes execution to be halted and a message to be output.

HALT In application programs, sets break points where execution is to
be halted.

SLEEP <seconds> Suspends the execution of an application for a specified period
of time.

Stopping and Pausing Programs

Controlling Execution

The flow of control of a Zim program goes from top to bottom
unless the following control structures and statements
intervene to change this flow.

% Control Structures

CASE… WHEN… OTHERWISE… ENDCASE

IF… ELSEIF… ELSE… ENDIF

ON… ENDON

WHILE… ENDWHILE

% Commands

BREAK

CONTINUE

GOTO [Label] [PREVIOUS] [NEXT]

RETURN

BYE

STOP

SET EXCEPTION

Controlling Execution - CASE

CASE

WHEN Event.EventName = “LostFocus”

return

WHEN Event.EventName = "F1”

AddNewRecord ()

WHEN salary < 20000

… commands …

OTHERWISE

GiveHelp ()

ENDCASE

Controlling Execution - IF

IF Age < 18

… commands …

ELSEIF Age between 18 and 55

… commands …

ELSEIF Age between 56 and 65

… commands …

ELSE

… commands …

ENDIF

Controlling Execution - ON

procedure MyProc(…)

on break

… commands to handle the "break" condition …

endon

… procedure commands …

SET EXCEPTION BREAK

… procedure commands …

endprocedure

The ON block will be invoked if the user presses the
BREAK button or the SET EXCEPTION is executed.

Controlling Execution - ON

Condition Cause Symptom

DEADLOCK A transaction is aborted as result of a
deadlock

$ErrCode = 2010

BREAK A break condition occurs at the user
station

The user presses the
“break” key on the
keyboard

ERROR An error or system error occurs $ErrLevel = 3 or 4

WARNING A warning message occurs $ErrLevel = 2

Controlling Execution - WHILE

WHILE [logical expression]

… commands …

if …

break

endif

if …

continue

endif

… commands …

ENDWHILE

Expressions

Value
Expressions

Atomic
Expressions

Arithmetic
Expressions

Functional
Expressions

Special
Formats

Logic
Expressions

Conditional
Expressions

Boolean
Expressions

Expressions

•Literals

•Named Constants

•Global Variables

•System Variables

•Parameters

•Field Names

•Form Field Names

•Add

•Subtract

•Multiply

•Divide

•Exponent

•“$” sign

functions

•Where format

•Assignment format

•Grouped format

•Case format

•Equal

•Not Equal

•Greater than

•Less than

•Less or Equal

•Greater or Equal

•[not] BETWEEN

•[not] IN

•[not] LIKE

•IS [not] NULL

•AND

•OR

•XOR

•NOT

123.45

‘This is an Atomic Expression’

$Date

vVar1

Salary

“1500.17”

Atomic Expressions

Arithmetic Expressions

Salary * 1.10

Salary + (Salary * 0.10)

(1 + InterestRate) ^ Years

5 / 2 Evaluates to 3

5 / 2.0 Evaluates to 2.5

1 + 1.01 Evaluates to 2.01

1.01 + (5 / 2) Evaluates to 3.51

$Date + 3 A date 3 days from today

Functional Expressions

Zim has hundreds of built-in functions

$length('Smith’) -> Evaluates to 5

$cos(0) -> Evaluates to 1

$log10(2 * 50) -> Evaluales to 2

$year(20250923) -> Evaluates to 2025

$maxof($absolute(- 10), 4 + 5) -> Evaluates to 10

$toupper($substring(‘abcdefg’, 2, 3)) -> Evaluates to ‘BCD’

Special Format Expressions - WHERE

% Evaluates to $NULL (‘A’ is not = ‘B’)

(‘It is true’ where ‘A’ = ‘B’)

% The expression is only evaluated if Salary > 20000

((Salary - 20000) where Salary > 20000)

List all Employees format \

(‘I work in Marketing’ where DeptCode=‘MKT’) Name DeptCode

Compute Employees where DeptCode = ‘SAL’ \

evaluate \

((let TotSalF = $average(Salary where Gndr = ‘F’)), \

(let TotSalM = $average(Salary where Gndr = ‘M’)), \

(let TotSalA = $average(Salary)))

Special Format Expressions - GROUPED

% Var1 evaluates to 155

% Var2 evaluates to 2

% Var3 evaluates to 20

Let Var1 = ((let Var2 = 2), (let var3 = var2 * 10), 155)

% Var1 evaluates to the Salary total but

% only records from Sales are listed.

List all Employees \

where ((let var1 = $total(Salary)), DeptCode) = ‘SAL’

The expressions are evaluated from left to right, one by one,
and the value of the grouped expression becomes the last
evaluated expression.

((<expression1>), ..., (<last expression>))

Special Format Expressions - CASE

{<expression1> [,<expression2>] …}

Output {“TALL” where Height > 6, ‘SHORT’}

Let Salary = {Employees.Salary, 0}

let LastDay = {29 where Month = 2, \

31 where Month in (1,3,5,7,8,10,12), 30}

The expressions are any value expressions, evaluated from left
to right. The result of the CASE expression will be the first
expression evaluated as not null.

Logical Expressions

Logical Expressions use conditional and boolean expressions
to compare operands, usually value expressions, yielding a
$TRUE (i. e., 1) or $FALSE (i. e., 0) result.

vA = vB OR vC NOT BETWEEN 10 AND 20

Salary > 50000 and (Let vCount = vCount + 1) < 0

They are evaluated from left to right, unless

parenthesis explicitly determine the order of evaluation.

The Evaluation ceases as soon as the final result can be correctly

determined, even if there is more expressions to evaluate.

Conditional Operators

OPERATOR CONDITION BEING EVALUATED

Expr1 = expr2 the values are equal

Expr1 <> expr2 the values are not equal

Expr1 < expr2 expr1 is less than expr2

Expr1 <= expr2 expr1 is less than or equal to expr2

Expr1 > expr2 expr1 is greater than expr2

Expr1 >= expr2 expr1 is greater than or equal to expr2

Expr1 Between Expr2 and Expr3 the value of Expr1 is greater than or equal to Expr2 and less than
or equal to Expr3

Expr1 Not Between Expr2 and Expr3 the value of Expr1 is less than Expr2 or greater than Expr3

Expr1 IN (expr2, expr3,…) the value of Expr1 is a member of the list of values (expr2,
expr3,…)

Expr1 Not IN (expr2, expr3,…) the value of Expr1 is NOT a member of the list of values (expr2,
expr3,…)

Expr1 IS [$]NULL The value of Expr1 is NULL

Expr1 IS NOT [$]NULL The value of Expr1 is not NULL

Expr1 LIKE pattern The value of Expr1 matches the pattern specified

Expr1 NOT LIKE pattern The value of Expr1 does not match the pattern specified

Conditional Expressions

EmpNum > 1254

FirstName = ‘Smith’

EmpNum Between 10 and 25

Name LIKE ‘%RK%’

CityCode NOT IN (‘OTT’,’TOR’,’NYC’)

Name = “M”?

Conditional Expressions use conditional operators to
compare value expressions yielding a logical result
$TRUE (1) or $FALSE (0).

Boolean Expressions

Simple Conditional Expressions can be combined into more
Complex Boolean expressions by using Boolean operators.

DeptCode = ‘SAL’ AND SALARY > 50000

Name = ‘M’? OR CitiCode in (‘TOR’,’NYC’)

NOT CityCode in (‘NYC’,’LON’)

Operator Meaning

NOT expr Negates the logical expression to the right. If the logical
expression is true, the result of the boolean expression is false
and vice-versa.

Expr1 AND Expr2 ANDs two logical expressions: if both expressions are true,
then the result of the Boolean expression is also true;
otherwise, is false.

Expr1 OR Expr2 ORs two logical expressions: the result of the Boolean
expression is always true unless all expressions are false.

Expr1 XOR Expr2 XORs two logical expressions: if either one is true, then the
result of the Boolean expression is also true; if both
expressions are either true or false, then the result is false.

Boolean Expressions

Operator Rule of Precedence

NOT NOT is evaluated first

AND AND is evaluated next

OR, XOR Evaluated last

Operators of equal precedence are evaluated from left to
right unless parenthesis are used to explicitly determine

the order of evaluation.

Expressions and $NULL

If an arithmetic or a functional expression contains a
$NULL value expression, then whole expression is
evaluated to $NULL.

If a logic expression contains a $NULL value expression,
then it is considered to be logically FALSE.

let vSalary = $Null

vSalary * 1.10 % Evaluates to Null

vSalary > 1000 % Is Logically False

If vSalary is $Null

output “A Logically TRUE Expression.”

endif

OUTPUT Command

The OUTPUT (or OUT) evaluates expressions and outputs their
results at the Zim prompt.

OUTPUT 1 “A character string”

1 A character string

OUT ($random($null) * 1000)

3457 % it’s a random number

OUT “Today is “ $mask($date, “YYYY/MM/DD”)

Today is 2035/12/31

SET Command

There are many SET commands to change certain characteristics
and behavior of the Zim application. Some of them are:

SET OUTPUT DocName % Outputs to a document.

SET OUTPUT TERMINAL % Outputs to terminal.

SET NULLVALUE <string> % NULL values become <string>.

SET SAVE % Saves the current settings.

SET RESTORE % Restores a previous SAVE.

SET LEXTRACE ON/OFF % Displays Zim program tracing.

SET SINGLESTEP ON/OFF % Traces a program line by line.

SET MEMBERCOUNT ON/OFF % Displays member count.

SET STRATEGY ON/OFF % Shows access strategy.

SET ERRORS ON/OFF % Displays errors at the prompt.

SET RUNTIME ON/OFF % Runs compiled programs.

SYSTEM Command

Execute OS commands within a Zim program.

% Copies a file on Windows.

SYSTEM “!copy c:\\Mydir\\MyFile.txt d:\\AnotherDir”

% List the contents of the current database path.

SYSTEM $concat(“ls “, $dbpath, “ > xxx.txt”)

Programming Basics

ZIM 9.10

