
1

Graphical User Interface

ZIM 9.10

2

What is Zim 9.10

Zim is

a complete framework to develop and run
professional and mission critical applications by
tightly integrating a lean relational database, a

powerful Fourth Generation Language, an integrated
development tool, the integration with outside world

and client user interfaces.

3

User Interfaces

ZIM User Interfaces are a combination of the following objects
defined in the Data Dictionary and maintained via ZimIDE:

Windows: one window per user interface to hold all objects related
to this UI;

Menus: a particular UI may have a menu to control the actions to
be performed by the application or by a section of it;

Forms: the screens themselves holding objects (FFS) like entry
fields, labels, buttons, etc. A UI only has one form;

Displays: a convenient combination of forms to form a UI. Only one
Display make up a particular UI;

Form Fields (FFS): the most basic object like entry fields, labels,
buttons, etc., populating a Form.

4

User Interface

The UI: Definitions

Name: all objects have a unique name up to 18 characters;

Navigation: the process of moving the attention from one object to
another;

Focus: is the location (object) where the next action will take place
like losing the focus, clicking, etc.;

Availability: is the capability of the focus to interact with the user.
For instance, a button may be protected, that is, the user cannot
click on it; an entry field ready to accept input, that is, available
for input, etc.;

Z-Order: the order the user navigates through all objects in the UI;

CallBack Event: response of the object on the focus when the user
interacts with the object. It can be a lose focus, click, etc.;

5

Windows
The definition of the Window wMain as seen in ZimIDE (not
all properties are being shown).

6

Windows Commands

WINDOW OPEN [window] [AT position] [SIZE winsize] \

[FOR form] [IN parent]

WINDOW OPEN wMain

WINDOW OPEN wMain AT CENTER SIZE MAXIMIZE

The WINDOW OPEN command makes the referenced
window available for work but not displays it.

WINDOW CLOSE [window]

WINDOW CLOSE wMain

WINDOW CLOSE removes a previously opened window
from the stack of opened windows and makes it inoperable.

7

Windows Commands

WINDOW ACTIVATE [window] [EXPOSE|HIDE]

WINDOW DEACTIVATE [window]

WINDOW OPEN wMain AT TOP RIGHT

WINDOW ACTIVATE wMain

SLEEP 3

WINDOW CLOSE wMain

The WINDOW ACTIVATE / DEACTIVATE commands expose
and hide an already opened window.

The above lines open the window wMain, activate it
(display it), wait 3 seconds and then close it.

8

Windows Commands

WINDOW MOVE [window] TO [position] [EXPOSE|HIDE]

WINDOW SIZE [window] [size-option]

WINDOW SET [NOT] CURRENT [window]

WINDOW SET CURSOR [option]

WINDOW STATUS [window]

WINDOW SET (options) [window]

Some options are:

[UN]AVAILABLE

BORDER color

[NOT] CLOSED

FILLCOLOR color

FONT expression

[NOT] FUNCTIONKEYS

[NOT] GOTFOCUS

LABEL expression

[NOT] LOSTFOCUS

[NOT] MESSAGES

[NOT] MODAL

PENCOLOR color

POINTSIZE expression

TABORDER BY setting

9

Windows Events

WINDOW OPEN wMain AT CENTER

WINDOW ACTIVATE wMain

LIST ThisWindow

WindowName WindowTag WindowNum EventName EventType …

wMain wMain 0 Closed Window …

IF ThisWindow.EventName <> “Closed”

…

…

ENDIF

WINDOW CLOSE wMain

The user interacts with the window which generate events that
can be collected and processed by the Zim application.

Menus

In ZimIDE, right-click on Menus, provide a
new name and start placing the menu bar
and menu items by simply clicking on the
menu.

11

Menu Commands

MENU OPEN menu

MENU CLOSE [menu]

MENU DISPLAY [INPUT] [PURGE] [menu]

WINDOW OPEN wMain AT CENTER

WINDOW ACTIVATE wMain

MENU OPEN mMain

MENU DISPLAY INPUT

…

…

WINDOW CLOSE wMain

The above lines open the window wMain, activate it
(display it), open the menu mMain, display the menu and
wait for the user interaction with the menu (or window).

12

Menu Commands

MENU SET (options) object

MENU CLEAR object

The object is either a menu name or a menu item.

WINDOW OPEN wMain AT CENTER

WINDOW ACTIVATE wMain

MENU OPEN mMain

MENU SET (CHECKED LABEL “My Label”) mMain.TheItem

MENU SET (SUPPRESS) mMain.AnotherItem

MENU DISPLAY INPUT

…

WINDOW CLOSE wMain

The names TheItem and AnotherItem were Properties
given to specific menu items when creating the menu.

Menu Events

WINDOW OPEN wMain AT CENTER

WINDOW ACTIVATE wMain

MENU OPEN mMain

MENU DISPLAY INPUT

LIST ThisMenu

MenuTag MenuNum MenuChanged MenuItemTag MenuItemNum

mMain 0 0 Print 0

IF ThisMenu.MenuItemTag = “Print”

PrintSomething()

ENDIF

WINDOW CLOSE wMain

The user interaction with the menus generates events that can
be trapped by the Zim application.

Forms

Forms are the core of any user interface in
Zim. They contain all widgets or elements
needed for user interaction, all designed
in ZimIDE.

Forms
Select the widgets (Form Fields) desired from the Toolbox tab and
position them in the form. From the Properties tab (only a few
properties shown), configure the widget (here, the properties or
attributes for the entry field CCode is shown).

16

FORM Commands

FORM OPEN form

FORM CLOSE [form]

FORM DISPLAY [INPUT] [options] [PURGE] [object]

WINDOW OPEN wMain AT CENTER

WINDOW ACTIVATE wMain

FORM OPEN fMain

FORM DISPLAY INPUT

…

…

WINDOW CLOSE wMain

The above lines open the window wMain, activate it
(display it), open the form fMain, display the form and wait
for the user interaction with the form (or window).

17

FORM SET Command

FORM SET (options) object

The object is either a form name or a form field.

% Protects the field (no input) and paints it in red.

FORM SET (PROTECTED FILLCOLOR RED) fMain.CCode

% Inhibits the double-click event.

FORM SET (NOT DOUBLECLICK) fMain.CCode

Here are some of the properties able to be used:

[NOT] ABBREVIATE

[NOT] AUTOCLEAR

[UN] AVAILABLE

[NOT] BOLD

PENCOLOR color

[NOT] CLICK

FILLCOLOR color

FONT fontname

The FORM SET alters dynamically the appearance and
behavior of a Zim object.

18

The CURSOR Control

[NOT] BOLD

FILLCOLOR color

[IN]VISIBLE

[NOT] ITALIC

NORMAL

PENCOLOR color

[NOT] REVERSE

[NOT] STRIKEOUT

[NOT] SUPPRESS

[NOT] UNDERLINE

John

LenonLenon

Director

Dynamically specifies attributes that are to be applied to
form fields getting the focus.

FORM SET (options) CURSOR

FORM SET (FILLCOLOR RED BOLD) CURSOR

19

Working With the Focus

Lenon

WINDOW OPEN wMain AT CENTER

WINDOW ACTIVATE wMain

FORM OPEN fMain

FORM SET (FILLCOLOR RED BOLD) fMain.LastName

FORM SET FOCUS fMain.LastName

FORM DISPLAY INPUT

…

WINDOW CLOSE wMain

Sets the focus on a particular Form Field.

FORM Events

WINDOW OPEN wMain AT CENTER

WINDOW ACTIVATE wMain

FORM OPEN fMain

FORM DISPLAY INPUT

IF ThisForm.FormTag = “fMain”

DoSomething()

ENDIF

WINDOW CLOSE wMain

The user interaction with forms can be detected within a Zim
application via the special structure ThisForm.

DISPLAYS

Forms can be grouped and treated as a unit within Zim objects
called Displays. All Zim commands and events dealing with
forms are also valid and extended to displays.

All objects within a display are accessed via their own forms.

In particular, the FORM OPEN / CLOSE commands refer to a
display and not any of its enclosed forms.

The same form can be defined in many different displays (for
example, all screens presenting a common footer).

Another special property of displays is that a form can be
repeated down and across forming a “grid” of objects that can
be accessed via the $Subscript system variable.

DISPLAYS

Displays are created in ZimIDE. The
next step is to select Forms (by right-
clicking them), Import them into the
display and positioning them as though
they were single widgets.

Events - Overview

In Zim, Windows, Menus and Forms may produce special
responses called events (or callback events) feasible to be
trapped within a Zim application by the special structures
ThisWindow, ThisMenu and ThisForm.

These structures contain detailed information about the object
generating the event along with the event itself.

However, there is another structure that is generic for all
objects: Event which does not provide detailed information
but generic enough to keep track of the event regardless of
the originating object type.

In fact, rarely there is a need to access the specific structures.

Events - Overview

WINDOW OPEN wMain AT CENTER

WINDOW ACTIVATE wMain

FORM OPEN fMain

FORM DISPLAY INPUT

LIST Event

EventName EventType EventTag WindowTag FormTag FieldTag MenuTag …

Click FormField bMainProfiles wMain fMain bMainProfiles …

% It does not matter where Click is coming from.

IF Event.EventName = “Click”

DoSomething()

ENDIF

WINDOW CLOSE wMain

Accelerator Keys

WINDOW SET [ADD | NOT] ACCELERATOR [keynames]

Accelerator Keys are mouse or keystrokes causing an event to
be generated once set to do it.

In the example below, every time a F1, ESCAPE or ENTER are
pressed, it generates an event.

WINDOW OPEN wMain AT CENTER

WINDOW ACTIVATE wMain

WINDOW SET ACCELERATOR F1 ESCAPE ENTER

FORM OPEN fMain

FORM DISPLAY INPUT

%If pressed ESCAPE, exit the application immediately.

IF Event.EventName = “ESCAPE”

BYE

ENDIF

WINDOW CLOSE wMain

26

Timing Out the Input

Controls how long a FORM INPUT or a MENU INPUT will wait
for the user interaction.

WINDOW OPEN wMain AT CENTER

WINDOW ACTIVATE wMain

WINDOW SET ACCELERATOR F1 ESCAPE ENTER

FORM OPEN fMain

SET INPUT TIMEOUT 10

FORM DISPLAY INPUT

% Sorry! After 10 seconds, chance lost!

IF Event.EventName = “TIMEOUT”

NextCandidate()

ENDIF

WINDOW CLOSE wMain

27

Graphical User Interface

ZIM 9.10

